No evidence for a link between childhood (6-10y) cellular aging and brain morphology (12y) in a preregistered longitudinal study

Brinkman, E.H.^{1,2}, Beijers, R.^{1,2,3,4}, Tyborowska, A.^{1,2,3}, Roelofs, K.^{1,3,4} Kühn, S.^{5,6,7}, Kievit, R.^{1,2} & de Weerth, C.^{1,2}

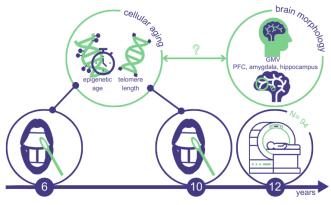
¹Donders Institute for Brain Cognition and Behaviour, Centre of Cognitive Neuroimaging ²Radboudumc ³Behavioural Science Institute

⁴Radboud University, Nijmegen

⁵Lise Meitner Group for Environmental Neurosciencen

⁶Max Planck Institute for Human Development, Berlin, Germany

⁷University Medical Center Hamburg-Eppendorf, Germany


INTRODUCTION

- Early life environmental factors, such as stress and trauma, can have a significant impact on a variety of bodily processes, including cellular aging and brain development.
- Whether cellular wear-and-tear effects are also associated with individual differences in brain structures, remains unknown.

OBJECTIVE

Investigate potential associations between two biomarkers of cellular aging (i.e. telomere length and epigenetic age), and brain structure at age 12.

METHODS

Population:

94 Dutch community children from the BIBO cohort

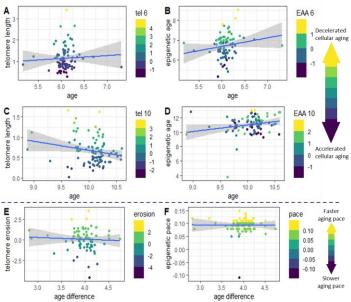
Analyses:

Whole-brain multiple regression analysis in SPM12

DISCUSSION

Potential explanations for these null-results are:

- The associations between cellular aging and brain morphometry might be only shortlived.
- Potential effects of cellular aging on brain maturation may be masked by interindividual variability
- The associations in a low-risk sample might be weak and only detectable with more participants


RESULTS

Distribution of telomere length and epigenetic age

in eviebrinkman

PREPRINT

evie.brinkman@radboudumc.nl

Bayes Factors indicated moderate evidence for the null hypothesis

Telomere length and epigenetic age at age 6	BF
Full model	5.888e+31
Telomere length + epigenetic age	.172
Telomere length	.361
Epigenetic age	.373
TIV, age, gender	4.111e+33
Telomere length and epigenetic age at age 10	
Full model	7.017e+31
Telomere length + epigenetic age	.070
Telomere length	.217
Epigenetic age	.217
TIV, age, gender	4.111e+33
Telomere erosion and epigenetic pace between 6 and 10	
Full model	6.0239e+31
Telomere erosion + epigenetic pace	.120
Telomere erosion	.284
Epigenetic pace	.270
TIV, age, gender	4.111e+33

CONCLUSION

No significant associations between childhood cellular aging and adolescent brain morphology.

Exploratory Bayesian analyses indicated moderate to strong evidence for the null-findings.

